skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shu, Chan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In this work, we study the interface obtained by depositing a monolayer of a Blatter radical derivative on polycrystalline cobalt. By examining the occupied and unoccupied states at the interface, using soft X‐ray techniques, combined with electronic structure calculations, we could simultaneously determine the electronic structure of both the molecular and ferromagnetic sides of the interface, thus obtaining a full understanding of the interfacial magnetic properties. We found that the molecule is strongly hybridized with the surface. Changes in the core level spectra reflect the modification of the molecule and the cobalt electronic structures inducing a decrease in the magnetic moment of the cobalt atoms bonded to the molecules which, in turn, lose their radical character. Our method allowed us to screen, beforehand, organic/ferromagnetic interfaces given their potential applications in spintronics. 
    more » « less
  2. Abstract We report relatively persistent, open‐shell thiophene‐based double helices, radical cations 1•+‐TMS12and 2•+‐TMS8. Closed‐shell neutral double helices, 1‐TMS12and 2‐TMS8, have nearly identical first oxidation potentials,E+/0 ≈ +1.33 V, corresponding to reversible oxidation to their radical cations. The radical cations are generated, using tungsten hexachloride in dichloromethane (DCM) as an oxidant,E+/0 ≈ +1.56 V. EPR spectra consist of a relatively sharp singlet peak with an unusually lowg‐value of 2.001–2.002, thus suggesting exclusive delocalization of spin density over π‐conjugated system consisting of carbon atoms only. DFT computations confirm these findings, as only negligible fraction of spin density is found on sulfur and silicon atoms and the spin density is delocalized over a single tetrathiophene moiety. For radical cation, 1•+‐TMS12, energy level of the singly occupied molecular orbital (SOMO) lies below the four highest occupied molecular orbitals (HOMOs), thus indicating the SOMO–HOMO inversion (SHI) and therefore, violating the Aufbau principle. 1•+‐TMS12has a half‐life of the order of only 5 min at room temperature. EPR peak intensity of 2•+‐TMS8, which does not show SHI, is practically unchanged over at least 2 h. 
    more » « less